Chemical
Engineering
Journal

www.elsevier.com/locate/cej

Ve

ELSEVIER Chemical Engineering Journal 111 (2005) 119-134

Mathematical model and numerical simulation of the dynamics
of flocculated suspensions in clarifier—thickeners

Raimund Birger®*, Kenneth H. KarlseR, John D. Tower$§

2 |nstitute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
b Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern, N-0316 Oslo, Norway
¢ MiraCosta College, 3333 Manchester Avenue, Cardiff-by-the-Sea, CA 92007-1516, USA

Abstract

We formulate a mathematical model for continuous sedimentation—consolidation processes of flocculated suspensions in clarifier—thickener
units. The governing equation of this model is a scalar, strongly degenerate parabolic equation in which both the convective flux and the
diffusion term depend on parameters that are discontinuous functions of the depth variable. A simple finite-difference scheme for the numerical
solution of the model is introduced. We perform a limited analysis of steady states as desired stationary modes of operation. Finally, numerical
examples illustrate that the model realistically describes the dynamics of flocculated suspensions in clarifier—thickeners.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction an ideal suspension of small, equal-sized rigid spheres in a
viscous fluid by the conservation law

Continuously operated clarifier—thickener units for the
solid-liquid separation of suspensions were invented in 1905 ou + db(u) -0
by Dorr[1] and are now widely used in chemical engineering, 0t 0x
mineral processing, the pulp-and-paper and food industries
and wastewater treatment. Early attempts to model mathe-
matically the operation of these units were made soon af-
ter their invention, see for examp]2,3] and, for extended

for the solids volume fractiom as a function of depth
and timet. The material specific properties of the suspen-
sion under study are described by the Kynch batch flux den-

historical di . h ) o1 A h - sity functionb(u). If a global conservation of mass principle
istorical discussions, the review papi#st]. A mathemati- is taken into account, then the extension of this theory to

cally rigorous framework, however, was established only very clarifier—thickener units leads to a conservation law with a

recently, and is based on a thorough investigation of non- g, that depends discontinuously BriThis discontinuity is
standard convection—diffusion equations with discontinuous o 1o the split of the suspension feed flow into upwards-

and degenerating coefficients.

. . . and downwards-directed bulk flows into the clarification and
For many purposes, spatially one-dimensional mathemat-

. ! . thickening zones, respectively. The discontinuous flux forms
ical models of these units are sufflc_lent. T_hese models_area challenge for the well-posedness analysis and the design of
usually based on the well-known kinematic sedimentation ot simulation tools for the clarifier—thickener model that
theory by Kynch[7], which describes the batch settling of have been resolved only very recer{By-14]
S As is well known, the solution of the conservation law

* Co[re_zspond_ing _author. Preser]t _addre_zss: Departmento, Qe Iﬁgenier arising from the kinematic theory propagates along char-
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Fig. 1. A clarifier—thickener unit treating a flocculated suspension: (a) steady-state operation in conventional mode; (b) steady-statendpigiatiate i
mode.

not ideal; rather, they consist of small flocs, or #lec- continuous sedimentation, the clarification zore<{x< 0)
culated These mixtures include inorganic slurries such as located above, the underflow zone>(xg) and the overflow
tailings from mineral processing, which are flocculated ar- zone k<x ). The vesselis continuously fed at degpth0, the
tificially in order to enhance settling rates, as well as bi- feed level, with fresh feed suspension at a volume feed rate
ological sludges in wastewater treatment. They form com- Qg(t) > 0. The concentration of the feed suspensiau:{$).
pressible sediment layers, which are characterized by curvedThe prescribed volume underflow rate, at which the thick-
iso-concentration lines in cylindrical settling columns, and ened sediment is removed from the unitQg(t) > 0. Con-
can therefore not be predicted by the kinematic theory. In- sequently, the overflow rate @ (t) = Qr(t) — Qr(t), where
stead, an extended dynamic model including pore pressurewe assume that the two control functids(t) andQg(t) are
and effective solids stress has to be used. Such a model is proehosen such th&g(t) > 0. For a vessel with constant cross-
vided by a theory of sedimentation—consolidation processessectional are&, we define the velocitieg (1):=Q\ (¢)/S and
outlined in[15-17] In one space dimension, the governing ¢r(z):=0r(t)/S.

sedimentation—consolidation equation is a quasilinear degen-  Of course, the solids concentrations in the underflow and
erate parabolic equation, which degenerates into the equatioroverflow cannot be prescribed, and are part of the solution.
of first-order hyperbolic type of the kinematic sedimentation Furthermore, we distinguish between the four abovemen-

model wheru < uc, whereuc is a material-dependeatitical tionedzonesn the clarifier-thickener, which are a property
concentrationor gel pointat which the solid flocs start to  of the equipment modeled, and the clear liquid, hindered set-
touch each other. tling, and compressioregions in which a suspension at a

It is the purpose of this paper to outline a new clarifier— given point of time has the concentrations zero,W0<Uc,
thickener model for flocculated suspensions as a combi-andu>uc, respectively. Thus, the time-dependent location
nation of the first-order models for ideal suspensions with of the regions is a property of a particular flow, that is, of the
the sedimentation—consolidation theory, which contributes a solution to the problem. Note that the compression region is
strongly degenerate diffusion term. The result is an initial- not confined to the thickening zone. These notions are stated
value problem of a strongly degenerate parabolic—hyperbolicto emphasize that the model includes two different station-
partial differential equation, in which both the convective flux ary modes of operation that are usually distinguished in the
and the diffusion term depend discontinuouslyxoRlearly, applicative literatur¢19]: conventional operatioras shown
solutions of such an equation are in general discontinuous.in Fig. 1(a), when the sediment level (whewe=uc) is lo-

The presentation of the mathematical framework in this con- cated below the feed level, ahijh-rate(also known akigh-
tribution is a summary of the recent analygid], while the capacity operation, when the feed suspension is pumped into
numerical examples presented herein are new and original. the sediment, as seerfig. 1(b). The second case can be pro-

To outline the present paper and put it in the proper per- duced by letting the sediment level (and thus the compression
spective, we consider a continuously operated axisymmetricregion) rise into the clarification zone. In the latter mode of
clarifier—thickener vessel as drawrHig. 1 Throughout this operation, practitioners observe that the concentration above
paper, we denote bya downward increasing depth variable, the compression region usually is zero. These distinctions are
and we assume that all flow variables depend on deptid made in engineering applications, and we will show that both
time t only. This means in particular thatis assumed to be  modes are captured by the model which we analyze in this

constant across each horizontal cross-section. paper.
We subdivide the clarifier—thickener vessel into four dif- In any circumstance we consider a submerged feed source
ferent zones: the thickening zone (2<xg), which is usu- at a fixed vertical location. The notion “high rate” stems from

ally the unique zone considered in conventional analyses ofthe experimentally confirmed observation that this mode of
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operation usually permits higher solids throughput than the 2. Mathematical model
conventional, since the clarification zone can handle part
of the solids feed flux. Capacity and design calculations 2.1. Balance equations
based on the new model are, however, outside the scope
of this paper. For sake of simplicity, we also neglect the  Consider a vertical vessel with a constant cross-sectional
action of the rake provided in most industrial thickeners, areaS Accordingtd14,28] the governing partial differential
which rotates above the gently sloped floor of the thickener equation for the solids concentratiar u(x, t) can be stated
to move the concentrated sediment towards the dischargeas
opening. 9
To put our treatment in the proper perspective, we men- — + —(q(t)u +u(l—u)y) = (2.1)
tion that similar clarifier—thickener models were proposed o ox
by several authors including Barton et f0], Chancelier whereq(t) is the volume averaged velocity of the mixture
et al.[21] and Lev et al]22]. All available treatments are, andv, the solid—fluid relative velocity. The kinematic sed-
however, limited to the case of an ideal (non-flocculated) sus- imentation theory7] is based on the assumption thatis
pension, which is included as a special case in our analysisa function ofu only, vy = v(u). The relative velocity is
(when we takeose=0 and henceA=0). In addition, we usually expressed in terms of the Kynch batch flux density
point out that in[21] the problem of flux discontinuities is  functionb(u), such that
circumvented by smoothing out the flux around the levels b(u)
x=0 andx=xg (in our notation). Important contributions  v/(u) = ———
to the study of clarifier—thickener models for ideal suspen- u(l—u)
sions have been made by DigAB—27] Numerical simula- and (2.1) takes the form
tions using a Godunov-type scheme are present@di26]
The paper by Concha et 4lL9] presents a limited discus- u + 7(6](;)” + b(u)) = (2.2)
sion of steady states for a steady-state clarifier—thickener o ox
model for flocculated suspensions that has many featuresThe functionb(u) is usually assumed to be piecewise differ-
in common with the one presented here but is incomplete entiable withb(u)=0 for u<0 or uU> Umax, Whereumay is
in that boundary conditions or flux transitions at the dis- the maximum solids concentratido(u) > 0 for 0 <u < Umay,
charge level are lacking. We also mention that in a recent p/(0) > 0 andy' (umay) < 0. A typical (and the most frequently
series of paper8,9,11,13]the authors with collaborators  ysed) example if29]
have put these first-order clarifier—thickener models on a i
firm ground concerning rigorous mathematical and numerical Voott(1 — )¢ ifO < u < umax
analysis. blu) = { (2.3)
The remainder of this paper is organized as follows. In
Section2 we introduce the mathematical model for the Whereéz 1 andvoo >0 is the Sett”ng Ve|ocity Of a Sing|e
C|arifiel’—thickener unit. The result iS an initial'value prOb- flocin pure fluid. However’ inthis paperwe adopttheformu'a
lem for second-order parabolic differential equation, which gye to Vesilind30]
exhibits two main non-standard features: a degenerating dif-
fusion term, which accounts for the sediment compressibility, Voolt €XP(—Cu) if0 < u < umax
and coefficients that are discontinuous with respect to the spa- u) = 0 otherwise
tial variable. In Sectio® we describe an easily implemented
finite-difference scheme for the model. The non-standard fea- For simplicity, we choose hergnax= 1.
tures of the model required a thorough mathematical anal- The sedimentation—consolidation theory outlined in
ysis [14]. Details of this research are beyond the scope of [15-17]} which includes the sediment compressibility, leads
this contribution, but Sectiohsummarizes the mathematical to the equation
framework for the clarifier—thickener model and results of re-
cent analysis. In particular, it becomes clear why the schemevr _ b(u) ( () 8“) (2.5)
outlined in Sectior8 can be regarded as a reliable simula- u(l—u) Aogu ox
tion tool. A limited analysis of steady-state solutions for the

clarifier—thickener model is presented in Secttoumeri- the acceleration of gravity, ang(u) the effective solid stress

cal simulations of filling up a clarifier—thickener, transitions . S - .
) function, which is now the second constitutive function (be-
between steady states and enforcing overflow are presented
Sidesb) characterizing the suspension. This function is as-

otherwise

(2.4)

whereAp > 0 denotes the solid—fluid density differencge,

in Sectiont. : . : sumed to satisfyge(u) > 0 for all u and
Itshould be pointed out that due to its mathematical nature,
Section4 is somewhat more technical in language, but the doe(u) { —0 foru <ue,
remaining parts of the paper (Sectidhgnd § are readily o(u):= - (2.6)
accessible to a general audience. du >0 foru>uc.
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A commonly used semi-empirical effective stress formula is represents the feed and discharge by boundary conditions. In

the power law the present model, the volume bulk velocities are
0 foru < u, gr() forx >0,

oeu) = A ‘ @7 g =
oo((u/uc) —1) foru > uc qL(t) forx <O.

with parametersro>0 andk> 1. Note that the derivative  This suggests employing (2.9) witift) = gr(t) for 0 <x<xg
oj(u) of the function defined in (2.7) is in general discon- andq(t) =q(t) for x_ <x<0. Furthermore, we assume that

tinuous atu=uc. Inserting (2.5) into (2.1) and defining in the overflow and underflow zones, the solid material is
. . transported with the same velocity as the liquid. This means

a(u)::b(u)oe(u)’ A(u)2=/ a(s) ds, 2.8) that the relative velocity between the phases vanishes0.
Aogu 0 The feed mechanism is introduced by adding a singular

source term, which we may express in terms of the derivative

we obtain the governing equation of the Heaviside function.

w9 PA(u) Combining these ingredients (9] for details), we ob-

i a(Q(t)M + b(u)) = 2 (2.9) tain the strongly degenerate convection—diffusion problem

Sincea(u) = 0 for u < Ug andu = Umaxanda(u) > 0 otherwise, ~ du N 9 (. u) = 9 ( )3A(M)

(2.9) is first-order hyperbolic fou<u; and second-order  or xS T 5 MY e )

parabolic foru > Ug. Since _(2.9) degenerf?lt_es into hyperboli_c —co<x<oo, t>0, (2.14)

type on a solution value interval of positive length, (2.9) is

called strongly degenerate parabolic. The location of the type-

change interfaca=u; (the sediment level) is in general un-

known beforehand. u(x,0) = up(x), —o0 <x < o0, (2.15)
For the determination of appropriate functido(®) and

oe(U) for real materials, sed28,31,32] Moreover, the qu(u — uf) forx < xi,

sedimentation—consolidation model is equivalent to the sus- qL(w —ug) +bu) forx <x <0,

pension dewatering theory employed[88—36] and other 8x, u):= ar(t — ug) + bu) (2.16)

works by the same group of authors.
Finally, we point out that combining (2.4) and (2.7), we
get

for0 < x < xR,
gr(u — uf) foru > xg.

Finally, we define the vector of discontinuity parameters

= (y1, y2) with
alu) = {ao expCu)u*=1 foruc < u < umax, 2.10) y:=17v2)

0 otherwise 1 forxe(x,xRr),
yi(x):=
0 forx ¢ (xL, xR),

where

koov g. forx <0,
agi=" 2. (2.11)  po(w)=

ucAog gr forx>0

Standard calculus yields the following explicit expression for 5,4 the flux function
A(u) whenk is an integer:

Jr(x), v):=g(x, u) = ya(x)b(u) + y2(x)(u — up).  (2.17)

0 foru < uc,
Al) = < Alu) — Alug) foruc <u < umax, (2.12) The alternative model with varying cross-sectional area is
Al —A(ue) foru > umax studied in[14].
(ttmax) (1) - For the function b(u) given by (2.4) with vy =
where 10~*m/s andC =6, the velocities in the clarifier—thickener
- 2 qL=—5.0x 10> m/sandjr =4.0x 107> m/sandie =0.21,
X X the flux functiongy(u) and the fluxes adjacent to the disconti-
A(u) = — — — —1)! — | . . o
() do exp(=Cu) ( C +k-1) ; Nnck-1 nuities ofy nearx=x_, x=0 andx=xg are plotted irFig. 2

(2.13) Fig. 3displays the effective solid stress functi@g(u) given
by (2.7) with op=50Pa,u;=0.2 andk=6, along with its
2.2. The clarifier—thickener model derivativeog(u), the diffusion functiora(u) given by (2.10),
and its primitive A(u) given by (2.12). These parameters,
Eq. (2.9) is the main ingredient of the thickener model Which correspond to a hypothetical material, will also be uti-
studied in[28], which only includes the thickening zone and lized in Section$ and 6
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Fig. 2. The Kynch batch flux density functidafu) (top left) and the fluxes adjacentxe x_ (top right),x=xgr (bottom left) andk=0 (bottom right).

3. Numerical scheme

a straightforward extension of the scheme usdiihfor the
first-order variant of (2.14) for ideal suspensions. To define explicit marching formula

it, chooseAx>0, setx; :=jAx, and discretize the parameter

wherexj+1/2:=X + Ax/2. In contrast td13], we discretize

Up andy in a pointwise manner, rather than via cell aver-
The numerical scheme for the solution of (2.14)—(2.16) is ages, which turned out to facilitate the mathematical analysis
[14]. Forn> 0 we define the approximations according to the

n+1 n n n
>€ 1 _ g A h(y; . :
vectory and the initial datum by Uj Ui (vj+1/2, Ujs1, Uj)

A
+A7XA—(V1,,/+1/2A+A(U7)),

Vit12:=v(Xj+1/2) U?Zzuo(xj), j=0,+£1,+£2 ...,

j=041,42. ..., n=0,12, ..., 3.1)
[kPa] [kPa] ————————

40 - 40} of(u) ~
30 1 30} j 1
20 ] 20} ]
10 ] 10k e 1
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Fig. 3. The effective solid stress functier(u) (top left), its derivativeo;(u) (top right), the diffusion coefficiena(u) (bottom left) and its primitiveA(u)
(bottom right).
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where 1= At/AX, A_Vj:=V; -V, A+Vj:=Vjx1 -V, where A(u) is defined in (2.8) and(y(x), u) is defined in
and (2.17). Eq.(4.1) is called strongly degenerate (or mixed

1 v hyperbolic—parabolic) becauaéu) has a “flat” region, which
h(y, v, u)::i fyu)+ f(y, v) —/ | fu(y, w)| dw] means tha#\(u) vanishes on a solution value interval (hamely,

" on [0, uc]) of positive length.

is the Engquist—Osher numerical fl{88]. For easy refer- Independently of the smoothnesgAx), solutionsto (4.1)
ence, we denote by? the piecewise constant function that are in general not smooth and weak solutions must be sought,
assumes the vaIuH;’ on the rectangleX{—_1/2, Xj+1/2) x [tn, that is, integrable functiong(x, t) taking values in the inter-
tned). val [0, 1] such that/y1A(u), € L2, u(r) — ug ast— 0+ (Uo

The suggested finite-difference scheme is a slightly is the prescribed initial function), and (4.1) is satisfied in the
modified version of the standard Engquist and Osher upwind sense of distributions. However, discontinuous weak solu-
scheme so that it can handle the spatial variation of the flux tions are in general not uniquely determined by their initial
A key point here is that the flux parameter vector (y1(X), data, so that a so-called entropy condition must be imposed
y2(X)) is discretized on a mesh that is staggered with respectto single out the physically correct solution. These “physi-
to that of the solids concentratian[39,40] Since the dis- cally relevant” solutions are called entropy weak solutions.
cretization ofy is staggered against that of the conserved Suppose for the moment thafx) = (y1, y2) is smooth.

quantityu, we avoid solving the full % 2 Riemann problem A weak solutioru is said to satisfy thentropy condition
that arises at each cell boundary if the two discretizations if for all convex twice continuously differentiable functions
were aligned, as in the schemes employefjAl]. n : R — R there holds

The resultis a scalar finite-difference scheme in conserva- 3 5
f[ion fo_rm whose flux d_ifferencing is biased in the directiqn of % + 871:(},()6)’ )+ () - (') £, (). w)
incoming waves, making it possible to resolve shocks without 97 X
excessive smearing. The decisive advantage of our scheme is d , A (u)
its simplicity. —Fy(y(x), u)) — P n (”)J’l(x)iax <0 (4.2)
In Section6 we use a semi-implicit variant of (3.1) for o
large-time computations, in which the diffusion terms are in the sense of distributions, where the entropy fifx, u)
evaluated at timés1 instead ot,. The resulting scheme re- IS defined by
quires the solution of a system of nonlinear equations in each oy
time step by the Newton—Raphson method. The advantage ofF”(y’ u) = () fuly, u)- (4.3)

using.a semi-imp!icit scheme Iie.s_in the faF:'F that we only need Formally, the entropy condition (4.2) is obtained by multiply-
to satisfy a stability (CFL) condition requiring thatt/Ax is ing (4.1) byn’(u), using the chain rule, and finally discard-

bounded, while (3.1)_enf0r_c_es that/(Ax)_2 be bound_e(_JI, See  ing the termy”(uU)y1 (XA (U)(3u/dx)? (parabolic dissipation)
[14]. Thus, the semi-implicit scheme is more efficient for thanks to the convexity of.

long-term computations, even if it involves solving a system By a standard approximation argument, (4.2) implies the
of nonlinear equatiOI’IS. entropy condition

Forallc€]0, 1] : %m —c|+ %(Sign(u —o)(f(y(x), u)

—f(r(x), ¢))) + signl — <)y’ (x) - fr(¥(x). c)

4. Mathematical analysis

We start by introducing some standard notations. The clas-

sicalLP spaces of real-valued function, t) are denoted by 0 (sign@t — ) aA(u)> <0
LP, 1< p < oo. The spaceV consists of functionsi(x, t) of 0x ox )~
bounded variation. A locally integrable functiofk, t) is an in the sense of distributions

elementoBVifand only ifits first order distributional deriva-

tivesou/ox andou/ot can be represented by locally finite Borel Wheny is smooth, it is known that there exists a unique and
measures. Inthis paper, we use the larger sBageonsisting stable entropy weak solution to (4.1). The mathematical the-
of locally integrable functiong(x, t) for which onlyau/at is a ory for strongly degenerate parabolic equations (with smooth

locally finite Borel measure. Finally, by a test functiggx, t) coefficients) has advanced significantly only in the last few
we mean a compactly supported functipfx, t) possessing  years, and we refer to the introductory part[d4] for an
continuous partial derivatives of any order. overview of the relevant literature.

The main ingredient in the clarifier—thickener model pre- The very notion of entropy weak solution introduced
sented in Sectiof is the second-order strongly degenerate above (in particular the entropy condition) and the corre-

parabolic equation sponding well-posedness theory is not applicable when

discontinuous. Motivated bj42,43], in [14] we suggest a
ou + if(y(x), u) = 9 <V1(X) 8‘4(“)) , (4.1) variant of the above notion of entropy weak solution that
or  ox ox ox accounts for the discontinuities in
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Let J:={x_, 0, xr} denote the set points wheyeis dis- y(X). More specifically, we use a Rankine—Hugoniot condi-
continuous. For a poimne 7, we use the notatiop(m—) tion expressing conservation across each jump, which is a
andy(m+) for the one-sided limits at the point consequence of (4.4), and also an entropy jump condition,

oL o which is a consequence of (4.6).
vim=)= L'{IJ, v (), vim+)= !Jf,l r). Letube aBV; entropy weak solution. Fix one of the jumps

in me J. Then the following Rankine—Hugoniot condition

We say that a function(x, t) is aBV; entropy weak solutioaf holds across the jump for aies (0, T):

the initial value problem for (4.1) if it satisfies the following

conditions: frasus) = 1A@W) )y = fr- u-) = (nAW),)_,

e (D.1) (regularity)ue L1 N BV, u(x, t) assumes values in
[0, 1] for all (x, t), andA(u)yx is uniformly bounded on the
domain &, xg) x (0, T).

e (D.2) (weak formulation) For all test functioggx, t)

where “—" denotes a spatial limit from the left and “+”
denotes a spatial limit from the right. Furthermore, for
u_(t) £ us(t), the following entropy jump condition holds
across the jump:

T e’}
L/ (aa‘f i [f(y(x), ) [F(ye i1 ) — SignGes — )0nA)),] — [FO-. u_. c)
—sign- — AW 1 < 1Fe ) — . Ol

9A(u)] 3¢
—y1(x) ™ } 3)6) dxdr = 0. (4.4) for all ¢ € [0, 1],
e (D.3) (initial condition) The initial condition is satisfied in  whereF(y, u, ¢):=sign@ — ¢)[ f(y, u) — f(y, c)].
the following strong sense: We mention that (D.4) is the analogue of the ‘extended
00 pressure condition’ postulated in problems of multiphase
lim / lu(x, t) — uo(x)| dx = 0. (4.5) flow in heterogeneous porous media (§&4] for details).
N0 J—oo These problems lead to equations with discontinuous flux
e (D.4) (regularity) Foranye [0, T], x > A(u(x, 1)) is con- and discontinuous (with respect to the space variable) dif-
tinuous ax=x_ andx=Xxg. fusion, which require an additional jump condition across

¢ (D.5) (entropy condition) The following entropy inequality ~ jumps of the diffusion coefficient (apart from the appropri-
holds for allce [0, 1] and all nonnegative test functions ate Rankine—Hugoniot condition) to ensure uniqueness. This

o(x, 1): analogy, and the observation that in our case, it seems un-
T roo o likely to obtain control on the limits oA(u)y for x | x_ and
/ / (|u — ¢|— + signi — ¢) [f(y(x), u) X1 XR, strongly support the postulate (D.4). Furthermore, the
0 J-oo ot unigueness proof ifiL4] relies on (D.4). It should be men-

9A(u)] 8¢ T tioned, however, that it is currently unclear howprovethat
—f(r(x). €) = ) — ] a) dx dr +/ > the numerical scheme converges to a solution that satisfies
N o O meyg (D.4), although our numerical simulations suggest that this
x | f(y(m+), ) condition is satisfied.
In fact, in [14] we prove that the scheme converges to
—f(y(m=), )lé(m, r)dr = 0. (4.6) a limit u that satisfies all components of our definition of

entropy weak solutions except (D.4). However, our numeri-

A functionu(x, t) satisfying only conditions (D.1), (D.2),  cal results support tha(u) is continuous acrose=x_ and
and (D.3) is called 8V; weak solutiorof the initial value  x=xg. In particular, transient numerical simulations converge
problem for (4.1). (for large times) to steady-state solutions.

Following [43], we proved in[9] thatBV; entropy weak In Section3 we devised a simple explicit upwind finite-
solutions as defined above are unique and depend continugifference scheme for computing approxim&té entropy
ously inL* on their initial values. More precisely, we proved weak solutions. Thanks to its upwind nature, they have the
the following statement: Letandu be twoBV; entropy weak  puilt-in property that they reproduce within reasonable accu-
solutions to the initial value problem for (4.1). Then for any racy the discontinuities in the solutions without the necessity

te(0,T) to track them explicitly, i.e., they are shock capturing. An ob-
00 ) vious requirement of any numerical scheme is that it should
/ [v(x, 1) — ulx, 1) dx < / lv(x, 0) — u(x, O)| dx. approximate (converge to) the correct solution of the prob-
- - 4.7) lem it is trying to solve. In the present context, this means

in particular that a numerical scheme should converge as
Among many things, the proof of thé stability (4.7), which the discretization parameters tend to zero to a limit function
immediately implies uniqueness, relies on jump conditions that satisfies the entropy condition (4.6), which implies the
that relate limits from the right and left of tH&V; entropy scheme produces solutions with correct discontinuities. Un-
weak solutioru at jumps in the spatially varying coefficient der some technical conditions on the initial functignit was
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rigorously proved in14] that the finite-difference scheme

possessed this desired property. For the initial data, the tech-

nical conditions read

ug € LY((—o0, 00)) N BV((—00, 00)),
uo(x) € [0, 1]Vx € (—o0, 00),

A(uo) is absolutely continuous on|[, xg],

y1A(uo), € BV((—00, 00)). (4.8)

The conditions in (4.8) require that any jumpug must be
contained within the interval wherkis constant. LetiA(X,

t) be the piecewise constant approximate solutions defined in
Section3. In [14] we prove the following statements: There
exists aBV; weak solution of the initial value problem (4.1)
that satisfies the entropy condition (D.5). With the discretiza-
tion parameteré&x and At chosen so that the CFL condition
holds, there exists a subsequencei®fthat converges to a
limit uin LY((a, b) x (0, T)) for any pair of constants, b
such tha<b. Moreover, the limit functioru is aBV; weak
solution of (4.1).

5. Steady-state solutions
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(c) The following entropy inequality holds for all twice dif-
ferentiable test functiong with compact support and all
real numbers:

/R(Sign(u(é) — k)(f(r(8), u(®)) — F(v(8). k)

(@AW )¢ ) dE+ D 1£(v(m™), k)
meJ
—f(y(m™), K)Ip(m) = O.

Observe that (5.3) is a time-independent version of (4.6).
Inequality (5.3) implies the following entropy jump con-
dition:
sign@(x™) — LA (), ux ™) = fr(x™), k)
—1( ") A () x=+] — SigN@E(x™) — k)
x [fr(x7), ulx7)) = fr(x7), k)
_Vl(x_)A/(”)|x=x‘] = |f(J/(X+), k)
— f(y(x7), k)| for all real numbers.

(5.3)

(5.4)

Note that the right-hand part of (5.4) is zero except for
X=X, X=0 andx=Xg.

Moreover, if we introduce the limits

The construction of steady states is based on the stationary

version of (2.14). We do not present here a thorough analysis”(x+):= E_)”}[Eﬂ u(§),

of all steady states but identify some stationary solutions in
order to motivate the choices of the control parameters for the
transient simulations. Our construction of steady states will
follow a procedure similar to that of the simpler continuous
thickening models treated [28,44] Specifically, we fix the

im
x,&

then one can prove that (sget] for details)

Au(x)) = A(u(x

u )=, im_ u(e)

7)) for all x. (5.5)

To construct a steady-state solution that satisfies (a)—(c), we

material model, the vessel geometry, and assume that theselect the discharge concentratiaf = u(x)|~ . and inte-

clarifier—thickener is to be operated at given valueQpf
Qr andufr, and is supposed to produce a thickened sediment
of a discharge concentratiag > uc.

A steady-state solution of the clarifier—thickener can es-
sentially be characterized as a piecewise twice differentiable
functionu that satisfies the following conditions:

(a) The functiony1(X)A(u)’ is bounded, where=d/dx.

(b) At those points where the functieanand the coefficient
y(X) are smooth, the differential equation holds, where
g(x, u) is given by (2.16):

glx.u) = (yr(x)A(u))'.

Whereveru or y is discontinuous, the correspond-
ing (Rankine—Hugoniot) jump condition is valid, where
u(xt) andu(x™) refer to limits ofu(€) taken for& — x
with & >x and& <x, respectively:

FaT) ulx™) — () A )=
= fly(), ulx ™)) = () A @)+

It is easy to see that this condition implies that steady-
state solutions are constant o« x_ andXx> xg.

(5.1)

(5.2)

grate upwards (i.e., in the direction of decreasipthe ordi-

nary differential equation (ODE) arising from the steady-state
version of the time-dependent governing partial differential
equation(2.14) In doing so, we obey jump conditions wher-
ever necessary, and thereby establish the limitations the en-
tropy condition imposes on the choice of control parameters.
Thus, the one-sided boundary condition is

lim

X—>XR,X<XR

u(xg)i= u(x) —up > uc. (5.6)

The discussion will be limited to those cases where the com-
pression zone does not reach the overflow level. In addition,
we limit ourselves to steady-state solutions for which the
overflow or effluent concentration::=u(x)| <, is zero, that

is, we choose the parametexs andug such that

Orur = (OrR — QL)ur = Qrup — QLUE (5.7)

is satisfied withug =0, or, equivalently,

uu; = up. (5.8)
qr

These steady states represent either the conventional or
the high-rate mode of continuous operation shown in
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Fig. 1(a) and (b), respectively. For convenience, we assumewhich means that

that

. . _ b(up) — A(u)|,_,+ =0. (5.10)
there exists exactly one point with u. < u™* < umax R
Assume now thati(x) is a continuously differentiable so-
lution of the following one-sided boundary value problem,
It should be emphasized that our steady-state problem is inwhich is the subcase of (5.1) occurring for the interval (0,
general overdetermined. In fact, fixingy and integrating XR]:

(5.1) upwards and obeying entropy and jump conditions, we
will in general not achieve a solution with|,<y, = ug =

such thay u™ + b(u™) = qLuE. (5.9)

gr(u — up) + b(u) — A(u) =0 for x < xg,

0. All profiles withu|,, <y, # ug = 0 have to be rejected as u(xR) = up. (5.11)
candidates for steady-state entropy solutions, since they do
not satisfy the global mass balance. Note that we have used (5.10) to reduce the second-order

To determine a steady-state entropy weak solution that ODE (5.1) to the first-order ODE (5.11). We assume that
satisfies the global mass balance, it is in general necessaryithin the thickening zone, it is possible to integrate the ODE
say, to fixug, chooseaup, solve (5.1), to verify whether (5.7)  (5.11) up to the levek; This means that. denotes the sed-
is satisfied withug replaced by:(x), and to iterate this solu-  iment level, when the sediment level is located in the thick-
tion procedure (for example, by varying) until the global ening zone (i.e., 0 % <Xgr), or otherwise, if it is possible to
mass balance (5.7) is attained. However, under the simplify- integrate (5.11) up to the feed levet 0, thenx; =0.
ing assumption (5.9), itturns out that solutions wigh= 0 can The entropy condition (5.3) imposes an additional admis-
easily be characterized: these are those steady-state entropgibility condition, which implies that not every solution of
weak solutions for which the compression region is strictly (5.11) is an acceptable steady state solution. More precisely,
contained in the container. This is the most important sub- this condition imposes a restriction on the choiceygfand
class of steady states, since they are the most desired modgp for a given flux density functioi(u). In fact, in[14] we
of operation (sed-ig. 1). Moreover, it turns out that these prove that any steady-stagatropysolutionu(x) of (5.11) is
steady-state entropy weak solutions are strictly increasing. monotonically increasing fot. <x<xg, i.e.

This means that as a consequence of the entropy principle
(represented here by the inequality (5.3)), aotby a pri- % (*) =0 for xc<x <axr.
ori assumption, the concentration at steady state increaseshis statement is equivalent to the requirement
downwards.

qrup < grk + b(k) for all k betweernu(x) andup
5.1. Steady-state solution in the discharge zone for x, < x < xr. (5.12)

Before proceeding to integrate the ODE (5.1) upwards The condition (5.12) has a useful graphical interpretation:
from x=xgr, we consider the discharge zore xgr. Since namely, the graph ofir(u) = gru+ b(u) must lie above the
we are seeking solutions for whidk(u) is continuous, we  horizontal linef = grup fixed by the desired operation data.
conclude that This condition limits the attainable solids throughput for

+ - given material and vessel.
Alu(xr)) = Alubg)) = Alup) To proceed with the discussion, we distinguish between
and thereforet (u(xz)) = up. On the other hand, from (5.1)  three casest. >0 (Case 1)x.=0 andu(0*)>uc (Case 2),
we infer that the steady-state solution must be constant forandxc =0 andu(0*) = uc (Case 3).
x>xr. We conclude that the solution is constant in the dis-  Casel (x.>0). In this case, the sediment level is located

charge zone, i.e. strictly below the feed level. The jump condition acrassx;
is

u(x) =up for x> xgr.
qru(xg) + bu(xg)) — Aw)'l,_,-

5.2. Steady-state solution in the thickening zone = qru(xg) + b(xd)) — AW)'| (5.13)

Now that the steady-state solution has been determined forr €SPectively. Moreover, we have that

X>XRr, we determine the solution fordx < xg, that s, in the AWGS)) = A()) = Aue) = 0

thickening zone. To this end, note first that as a consequence = = ¢ ¢ ’

of the jump condition (5.2), the steady state solution must so that 0< u(x;) < uc. From (5.11) and the definition af
satisfy the condition it follows that

qruD + b(up) — A(u)],—+ = grUD, qru(xg) + b(xd)) — A@W)'| .+ = qruD.



128 R. Birger et al. / Chemical Engineering Journal 111 (2005) 119-134

Inserting this into (5.13), we get a first-order ODE:

qru(xe) + b(ulxe)) — A@)'|,—,- = qrup. (5.14)  qu(u(x) —u(07)) + b(u) — b(u(07)) — A(u)'lx=0 — u'(07)

Inserting (5.11), (5.14) and(x;") = uc into the entropy jump =0forx <0, u(0)=u(07). (5.17)

condition (5.4) evaluated at=x; yields Utilizing the jump condition (5.2) across=0 and recalling

sign(uc — k)(grup — qrk — b(k)) — signfu(xg) — k) that we already kr!ow that(0~) =u(0*) as well as that we
have been able to integrate (5.11) upxte0, we can deduce

x (grup — grk — b(k)) <0 (5:15)  the equation
for allreal numbersk. If kis chosensuchthafx;) < k < uc, A@W) |ieo— = qLu(07) — gritp — (gL — qr)ur + b(u(07)).

then (5.15) is reduced to
(5.18)

qrup < gr(k) = grk + b(k) for all k betweeru(x; ) anduc.
(5.16) Finally, we insert (5.18) into (5.17), and obtain the one-sided

boundary value problem

On the other hand, from (5.12) we infer that quie(x) + b(u) — A(u) — grup — (gL — qr)ur = O,
qRUD = qRitc + buc). <0, u(0)=u(0) (5.19)
This means that ai=uc, the graph ofgr(u) lies above or
intersects the horizontal linie= grup. Consequentlyy(x;)

is the largest intersection gik(u) with the horizontal line
f=qgrup that is smaller or equal ta:. It is not difficult to see
that the steady-state solution in the intervg| Q) is given by

We now definex¢c to be the largest height (i.e., the smallest
value ofx) up to which it has been possible to integrate (5.19).
This means that eithef. < X; < 0 is the sediment level at-
tained in the clarification zone, a. = x_ if the sediment
the constant (x; ), which is uniquely constructed here. reaches up to the overflow level. Furthermore, we recall from

Cases2 and 3 (x.=0, u(0*) > uc). The construction of (5.19) and (5.18) that we have
the steady-state solution in the thickening zonex], is bu(x)) — Aw) = —qLu(x) + grup + (gL — gr)ur
completed. The differentiable solution profile is given by the
solution of the one-sided boundary value problem (5.11). for xe(xc 0],

as well as that we obtain from (5.3) the inequality

Casel (x> 0). Atx=0, the next flux discontinity has [sign@(0™) — k) — sign@(x) — k)](—qLk — b(k)

asel (xc>0). Atx=0, the next flux discontinuity has to

be dealt with. However, since the solution for 0 is );; con- +qrup + (gL — qr)ur) = 0 (5.20)
stant not exceedingc and sinceA(u) is continuous across  for all x betweens and 0 and all real numbeks

x=0, we have to treat a transition between two fluxes of 1o simplify the further discussion, we recall that
a hyperbolic conservation law. The determination of the en- goup + (g — gr)us =g Ug. Then, the solution in the inter-
tropy weak solutionto this problem has beentreated in severalyg| (5, 0) in the present case is given by the solution of the

papers including8,23-25] see[14] for further references.  gne-sided boundary problem (which is a slight rearrangement
The basic complication is that if the fluxes adjacent to a flux of (5.19))

discontinuity are non-monotone, then there might be several

5.3. Steady-state solution in the clarification zone

possibilities to satisfy the jump condition if a left state is /() — qru(x) + b(u(x)) — aUE <0,
given, and an application of the entropy condition is neces- a(u(x))
sary to single out the unique entropy-satisfying solution. This u(0) = u(0). (5.21)

will in general generate a multitude of cases here, depending

on the flux parameters, properties of the functipmnd on Recall that (5.9) explicitly states that there exists exactly one

which solution of the equatiogru+b(u) =gpup Yyields the  pointu” with uc <u" < umax such thaty u” +b(u") =g Ug.

relevant state in the interval. All these cases can be handled We first assume that(0*)=u(0~)>u". However, it is

by the recent theory of conservation laws with discontinuous straightforward to show that(0~) > u* does not lead to an

flux. For simplicity, however, we limit ourselves in this paper admissible steady-state solution, §&4] for details. The re-

to steady-state solutions for which the sediment level at leastmaining case isi(0~) <u". Then the right-hand side of the

attains (if not exceeds) the feed level, which excludes Case 1.0DE in (5.21) is always positive, which implies a mono-
Case2 (X.=0, u(0")>uc). The continuity ofA(u) as a tonically increasing (decreasing upwards) solutigx) un-

function of x implies thatu(0~)=u(0%) if u*>uc. Thus, til x = X is reached. This solution also satisfies the en-

we can continue to solve (5.1) in the clarification zone tropy condition. In fact, for any € (xc, 0) with u(x) <u(0™)

X € (XL, 0). Integrating this ODE over the intervad, 0), we and for all ke (u(x), u(0™)), condition (5.20) (which is

obtain the following one-sided boundary value problem for void for all other values ok and foru(x) =u(0™)) implies
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L L e

2(—qk—b(K)+qLug) <0, i.e., 08

B mmm e
gr(u) = qru + b(u)

qLk + b(k) — gqLug > Ofor all k between(x) andu(07),
(5.22)

which in view of (5.21) is satisfied ifi(x) is a monotonically
decreasing solution onx{;0).

Summarizing, we can say that in Case 2, any admissible
steady-state entropy solutiars u(x) with u(0™) = u(0*)>uc
must satisfyu(0~) <u’, whereu is the unique point between
Uc andumay satisfying constants qr up,

ue = 0.1 <u < up,
0.0 up =1 (top), up = 0.95 (middle), up = 0.9 (bottom) 7
*\ _ * *\ _ un op), un , un
gL(u™) = quu™ +b(u™) = qLue. tmin = 0.7433, 9(tmin) = 0.3833 x 1077 m/s

0.4

0.2 F

This solution is monotonically increasing on the interval

(}C’ 0) —-0.2
This conclusion also admits a graphical interpretation

whenever we know the valug0™)=u(0™). Thus, it can be N T S S T

evaluated only after the solution in the thickening zone has 001 02 03 04 05 06 07 08 09 1

been determined. Furthermore, combining this finding with ul

our discussion for the thlckenlng Zon.e’ we Se.e that in a_”y of Fig. 4. Thefluxfunctiomr(u) = gru+ b(u). The plot also shows the constant

the Cases 1, 2 or 3, the entropy condition and jJump conditions jjnes gqup for some values afip.

enforce that/(x) > 0 in the compression region.

With the present discussion, we have constructed asteady- agq in Fig. 2, the bulk velocitiegr =4.0x 10-8 m/s and
state solution up tac, provided thati(x) > uc in the thicken- L =—5.0x 10-6m/s. Thus, we are interested in steady
ing zone. To finish the steady-state construction, let us first gt5tes for which
recall that for sake of brevity and being well aware of the in-

completeness of the treatment in the present paper, we limitup = uu,: = 2.25uf

the discussion to those steady states for which | . In this qR

case, there is a jump locatedat Xc. We now seek the con-  and these parameters have been chosen so that assumption
stant solution value = u(x;) in the interval &, Xc). This (5.9) is satisfied. The relevant flux functions for the thick-
value must satisfy & u(x¥) < uc. From the jump condition  ening and clarification zonggr(u) andgy (u), are plotted in

that follows from (5.2): Figs. 4 and 5respectively.

. L , We start the steady-state construction by fixing values of
quu(ic) +b(ic) = qruc + bluc) + A" ()] —z¢ - up and limit ourselves to those values that ensure that the
we see that the constamfx;) = uc is not a solution. Con- S
sequently, we look for a constant=Qu(x}) < uc. To this gu(u) = quu +bw)
end, note that the steady-state jump conditionxak_ is (107> m/s]
gL(x) = quu(x) + bu(x)) = qLulx) = qLue. Tak- 04|

ing into account thaty_(u) is a non-negative monotonically
increasing function on [Qyc], while the right-hand side is a
non-positive constant, we conclude (similar as in the discus- 02}
sion of Case 1) thate =0 andu(x;) = 0, i.e., the solution

is zero on i, Xc)-

Case3 (X = 0,u(0") =uc). In this case, it turns out that the 0.0
solution forx<0, including also the sectiox< x_ , vanishes
identically, sedg14] for details. Thus, the solution of Case 3
is the limiting case of Cases 1 and 2 f¢0") — uc.

u* = 0.499

—-0.2

5.4. Examples of steady states o4l
qru

Here and in Sectiof, the flocculated suspension is char-
acterized by the functions(u) andoe(u) given by (2.4) and B T T
(2.7), respectively, with the parameters specified in Se@ion L
seeFigs. 2 and 3Moreover, we consider a cylindrical vessel

with x, =—1mandxg=1m. Fig. 5. The flux functiorgy (u) = q. + b(u).
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entropy condition (5.12) is satisfied. To this end, we consider -12 EARRS LA LA LA AR LA

the plot ofgr(u) and draw horizontal line segmeritsgrup —10 |

for a selection of values afp and foru; <u<up, as has 0.211 oo
been done irFig. 4. We see that these lines remain strictly 08¢ 0-200 o
below the graph ofir(u) for those values afip for which o6 b 200
—————————0.204

grup < min  gr(u) = gr(0.7433)~ 3.833x 10 8 m/s 04 20—
uc<u<1l ———10.200

02 ——F=—0.198
o 0.196

This implies that the entropy condition (5.12) is satisfied a
priori (i.e., independently of the depth of the thickening zone
xgr) for all up with 0.2

0.0

0.4

1 .
Uc <UD < UDpae=— MiN gr(u) 0.6

gR uc<ux<l
3.833x 10 %m/s 08
== —76 == 09583 0.120
40x 107°m/s 10}
2 [m)
For all other values afip, it would be necessary todetermine 2o o0s o1 o5 02 o2 03 055 o4 0. -]

asolutionto (5.11), and to check whether this is monotone on

[Xc, Xr]. Since the maximum solids concentrations attained Fig. 6. Steady-state concentration profiles for the indicated values.of

in most real-world flocculated systems are far below 0.9583, The dotted curves show solutions of (5.11) and (5.17) that do not lead to
we will not pursue this here admissible steady states with zero overflow concentration.

Given this limitation orup, we choose the profiles for )
5.5. Concluding remark

ur =012 013,...,019,01920.193 .., We point out that the conditiom'(x) > 0 valid for an ad-
0.21,0.211,0.215 0.22 missible (entropy-satisfying) steady-state solution is in full
agreement with engineering intuition, since one expects that
for closer inspection. Solving (5.11) with a standard numeri- in a clarifier—thickener operating properly at steady state, the
cal method for ordinary differential equations, we obtain that concentration increases downwards. In fact, in several pre-
for up <0.19, we havex. >0 and therefore steady states of vious papers dealing with a simpler model of an ideal con-
Case 1, while all other values lead to candidates for Case 2.tinuous thickenef28,16], which basically consists only of
Solving the equatiogru(xg) + b(u(x:)) = grup NUMeri- the thickening zone of the model discussed here, the condi-
cally yields the following values af(xz) which we used to  tion u'(x) > 0 waspostulatedas a separateequirementfor
plot the constant concentration for the hindered settling re- the determination of admissible steady states following just
gion of the Case 1 profiles. For these valuegmgifthe steady-  from this intuition, and the graphical condition (5.12) was de-
state entropy weak solution in the clarification and overflow rived from this condition. We now clearly see that the natural
zones is zerdrig. 6includes plots of these profiles. requirement that a steady state should be an entropy weak
It remains to deal with the remaining profiles, that is, solutionimpliesthis monotonicity property in the thickening
with the candidates for Case 2, for which the clarifica- zone, and it is thereforannecessaryo introduce it as an
tion zone has to be examined. We have just found out additional condition.
that all of these concentration values admit an entropy- Observe that in contrast to our analysis of the thickening
satisfying steady-state solution in the thickening zone. For zone, we do not apply the entropy condition to construct the
Up =2.25x 0.215=0.48375 andup=2.25x 0.22=0.495, restrictions on the parameters in the clarification; rather, we
we obtain admissible profiles in the clarification zone, which, exploitthe jump conditions to establish these restrictions, and
however, reach the overflow levek x_ , and will produce an  then check that the admissible solution satisfies the entropy
effluent with non-zero concentratia. These profiles are  condition.
no admissible entropy steady-state solutions since the global

conservation principle is violated. The values )
6. Numerical examples

up = 2.25x 0.192=0.437764...., . . .
In the numerical examples, we utlize the semi-
up = 2.25x 0.211= 0.47475 implicit variant of the scheme (3.1) withx=0.005m and
A=2000s/m. The values af. and gr are kept constant
lead to admissible steady-state profiles wigh="x , and, as throughout, whileur is allowed to vary as a piecewise con-
a consequence of our analysig,= 0. stant function of time.
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Fig. 8. Simulation of filling up a clarifier—thickener with =0.21.

0.5

wl-] Finally, we point outthatthe visual grids usedrigs. 7-11
05 are much coarser than the computational ones used for the
SRS numerical simulations.
o4 :::'Z%:fﬁfz:‘:i:f" Fig. 8 shows a fill-up process similar to that Bfg. 7,
e S e NN ; ; P ;
03 'WWWM but with u==0.21. Fig. 6 indicates that this value corre-
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Fig. 7. Simulation of filling up a clarifier—thickener witl =0.18: initial 027

phase (top) and convergence to steady state (bottom). o1

Fig. 7 shows the simulation of filling up a clarifier— 0%3007 :
thickener that is initially full of waterio = 0). The feed con- 72 o
centration is chosen ag =0.18. The upper plot ofig. 7 t10"s] 16 10
displays the initial stages of the simulation and in particu-
lar illustrates that the solids fed into the unit at the feed level
exclusively pass into the thickening zone. Moreover, the con-
centration just above=xg almost immediately exceeds the
critical value. We observe the rise of the sediment level and
the increase of the discharge concentration. The lower plot
illustrates that after roughly 5:6 10° s (or 64 days), the sys-
tem apparently attains a steady state, which seems to be the
steady state dfig. 6 corresponding toir=0.18.

It should be commented, of course, that no plant operator
would start with an empty vessel and leave it open during the
fill-up process, as has been assumed here, and that by closing
the equipmentthe fill-up can be considerably accelerated. The
intention behind this and the following related examples is to
demonstrate the apparent tendency of the system to converge
to a stationary solution just if the operating variables (the
feed concentrationr and the bulk velocitieg. andgg) are Fig. 9. Transitions between high-capacity and conventional steady states by
chosen appropriately. stepwise changes of (continuation of the simulation dfig. 7).
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Fig. 10. Simulation of a clarifier—thickener under strongly varying feed con-
centration (two different views; continuation of the simulatioridg. 8).

sponds to a high-rate steady state, with the sediment level
located in the clarification zoné:ig. 8 illustrates how the
clarifier—thickener is filled up. Again, at first the feed solids
settle into the thickening zone only, but the growing sediment
level rapidly reaches the feed level and breaks into the clar-
ification zone. After a simulated time ofs81CF s, the con-
centration profile is very similar to the corresponding profile
shown inFig. 6for uz=0.21, though the numerical solution
has not yet become stationary by that time.

Fig. 9is a continuation of the simulation d&fig. 7. To
illustrate the effect of the variation of the feed concentration,
we changeir in a stepwise fashion according to

0.210
0.200
0.211
0.16

ur(t) =

Fig. 9, which consists of two different views of the same

for80x 10°s <1< 4.0x 10"s,
for40 x 10°s < < 5.6 x 10 s,
for56 x 10's<r< 7.2 x 10s,
forr > 7.2 x 10s.

(6

1)
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Fig. 11. A different view of the numerical simulation Bfg. 10

steady state profiles corresponding to the valuagafiven
by (6.1), sed-ig. 6. Note that the location of the feed level
x=0 can always be traced by a faint kink in the concentration
profiles. The final state of the system is the steady state of
conventional operation valid faf= =0.16.

Finally, we present a continuation of the simulation of
Fig. 8 produced by strongly varying the feed concentration
as follows, wherd@ =8.0x 10’ s

0.07 sin(2r(+ — 0.17)/(0.367))
for 0.17 < ¢ < 0.467T,

0.14 sin(2c(t — 0.46T)/(0.36T))
for 0.46T <t < 0.827,

ur(t) =021+ 3 21 sin(@e(r — 0.921)/0367)) O
for 0.82T <t < 0.917,

0.21

fort > 0.91T.

Observe that the functione(t) assumes values in [0, 0.42]
and is continuougrigs. 10 and 1show three different views

of the simulation of the response of the clarifier—thickener
to this variation of the feed concentration. In particular, we
observe how the solids break into the overflow zone. In three
“waves” a non-zero effluent concentration is produced. Dur-
ing the first wave, however the concentration of the overflow
remains below the critical value, while during the second
and third wave, the critical value is exceeded. Apparently,
the system eventually attains a stationary solution with non-
zero overflow concentration. However, this class of steady
states has for simplicity been excluded from our analysis.
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